Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(4): 114103, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607920

RESUMO

Hypoxia-inducible factor-1α (HIF1α) attenuates mitochondrial activity while promoting glycolysis. However, lower glycolysis is compromised in human clear cell renal cell carcinomas, in which HIF1α acts as a tumor suppressor by inhibiting cell-autonomous proliferation. Here, we find that, unexpectedly, HIF1α suppresses lower glycolysis after the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) step, leading to reduced lactate secretion in different tumor cell types when cells encounter a limited pyruvate supply such as that typically found in the tumor microenvironment in vivo. This is because HIF1α-dependent attenuation of mitochondrial oxygen consumption increases the NADH/NAD+ ratio that suppresses the activity of the NADH-sensitive GAPDH glycolytic enzyme. This is manifested when pyruvate supply is limited, since pyruvate acts as an electron acceptor that prevents the increment of the NADH/NAD+ ratio. Furthermore, this anti-glycolytic function provides a molecular basis to explain how HIF1α can suppress tumor cell proliferation by increasing the NADH/NAD+ ratio.


Assuntos
Proliferação de Células , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia , NAD , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , NAD/metabolismo , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Animais , Ácido Pirúvico/metabolismo , Ácido Láctico/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Camundongos
2.
Nat Cancer ; 4(3): 344-364, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36732635

RESUMO

Metabolic rewiring is often considered an adaptive pressure limiting metastasis formation; however, some nutrients available at distant organs may inherently promote metastatic growth. We find that the lung and liver are lipid-rich environments. Moreover, we observe that pre-metastatic niche formation increases palmitate availability only in the lung, whereas a high-fat diet increases it in both organs. In line with this, targeting palmitate processing inhibits breast cancer-derived lung metastasis formation. Mechanistically, breast cancer cells use palmitate to synthesize acetyl-CoA in a carnitine palmitoyltransferase 1a-dependent manner. Concomitantly, lysine acetyltransferase 2a expression is promoted by palmitate, linking the available acetyl-CoA to the acetylation of the nuclear factor-kappaB subunit p65. Deletion of lysine acetyltransferase 2a or carnitine palmitoyltransferase 1a reduces metastasis formation in lean and high-fat diet mice, and lung and liver metastases from patients with breast cancer show coexpression of both proteins. In conclusion, palmitate-rich environments foster metastases growth by increasing p65 acetylation, resulting in a pro-metastatic nuclear factor-kappaB signaling.


Assuntos
Lisina Acetiltransferases , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Acetilação , Acetilcoenzima A/metabolismo , Palmitatos , Lisina Acetiltransferases/metabolismo
4.
Nature ; 605(7911): 747-753, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35585241

RESUMO

Cancer metastasis requires the transient activation of cellular programs enabling dissemination and seeding in distant organs1. Genetic, transcriptional and translational heterogeneity contributes to this dynamic process2,3. Metabolic heterogeneity has also been observed4, yet its role in cancer progression is less explored. Here we find that the loss of phosphoglycerate dehydrogenase (PHGDH) potentiates metastatic dissemination. Specifically, we find that heterogeneous or low PHGDH expression in primary tumours of patients with breast cancer is associated with decreased metastasis-free survival time. In mice, circulating tumour cells and early metastatic lesions are enriched with Phgdhlow cancer cells, and silencing Phgdh in primary tumours increases metastasis formation. Mechanistically, Phgdh interacts with the glycolytic enzyme phosphofructokinase, and the loss of this interaction activates the hexosamine-sialic acid pathway, which provides precursors for protein glycosylation. As a consequence, aberrant protein glycosylation occurs, including increased sialylation of integrin αvß3, which potentiates cell migration and invasion. Inhibition of sialylation counteracts the metastatic ability of Phgdhlow cancer cells. In conclusion, although the catalytic activity of PHGDH supports cancer cell proliferation, low PHGDH protein expression non-catalytically potentiates cancer dissemination and metastasis formation. Thus, the presence of PHDGH heterogeneity in primary tumours could be considered a sign of tumour aggressiveness.


Assuntos
Neoplasias da Mama , Metástase Neoplásica , Fosfoglicerato Desidrogenase , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Feminino , Inativação Gênica , Humanos , Camundongos , Fosfoglicerato Desidrogenase/genética , Serina/metabolismo
5.
Cell Metab ; 34(1): 7-9, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986339

RESUMO

Diet can influence tumor aggressiveness. Recently in Nature, a study by Pascual et al. provided evidence that dietary palmitic acid induces an epigenetic memory by modulating particular histone methylation marks in cancer cells. This allows cancer cells to activate extracellular matrix secretion from Schwann cells of the tumor microenvironment, which ultimately potentiates metastasis initiation.


Assuntos
Neoplasias , Ácido Palmítico , Epigenômica , Humanos , Metilação , Microambiente Tumoral
6.
Cancer Metab ; 8(1): 26, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33292758

RESUMO

BACKGROUND: Aspartate biosynthesis and its delivery to the cytosol can be crucial for tumor growth in vivo. However, the impact of intracellular aspartate levels on metastasis has not been studied. We previously described that loss-of-aspartate glutamate carrier 1 (SLC25A12 or AGC1), an important component of the malate-aspartate shuttle, impairs cytosolic aspartate levels, NAD+/NADH ratio, mitochondrial respiration, and tumor growth. Here, we report the impact of AGC1-knockdown on metastasis. RESULTS: Low AGC1 expression correlates with worse patient prognosis in many cancers. AGC1-knockdown in mouse lung carcinoma and melanoma cell lines leads to increased pulmonary metastasis following subcutaneous or intravenous injections, respectively. On the other hand, conventional in vitro metastasis assays show no indication of increased metastasis capacity of AGC1-knockdown cells. CONCLUSION: This study highlights that certain branches of metabolism impact tumor growth and tumor metastasis differently. In addition, it also argues that commonly known metastasis indicators, including EMT genes, cell migration, or colony formation, do not always reflect metastatic capacity in vivo.

7.
Mol Cell Oncol ; 6(5): e1536843, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31528687

RESUMO

Cancer cells rely on glutamine to fuel mitochondria, however it remains unclear whether this is needed for bioenergetic or biosynthetic pathways. Our study suggests that an essential function of mitochondrial glutamine metabolism is to provide aspartate to the cytosol where it can be used for nucleotide and protein synthesis.

8.
Cell Metab ; 28(5): 706-720.e6, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30122555

RESUMO

Mitochondrial function is important for aspartate biosynthesis in proliferating cells. Here, we show that mitochondrial aspartate export via the aspartate-glutamate carrier 1 (AGC1) supports cell proliferation and cellular redox homeostasis. Insufficient cytosolic aspartate delivery leads to cell death when TCA cycle carbon is reduced following glutamine withdrawal and/or glutaminase inhibition. Moreover, loss of AGC1 reduces allograft tumor growth that is further compromised by treatment with the glutaminase inhibitor CB-839. Together, these findings argue that mitochondrial aspartate export sustains cell survival in low-glutamine environments and AGC1 inhibition can synergize with glutaminase inhibition to limit tumor growth.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Antiporters/metabolismo , Ácido Aspártico/metabolismo , Sobrevivência Celular , Citosol/metabolismo , Glutamina/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Ciclo do Ácido Cítrico , Feminino , Humanos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA